Deriving the Conversion Factors for the Fahrenheit and Celsius Scales

A chart showing the three different temperature scales has been provided for you. Use it to complete this activity. Place a straight edge across the Fahrenheit and Celsius scales to read their corresponding values.

1. Complete the following table.

	Fahrenheit	Celsius			
T_f	32°	0			
T _b	212°	0			
$T_b - T_f$	0	0			
	$\frac{T_b - T_f Fahrenheit}{T_b - T_f Celsius} =$				

0	T (1	01.	1 11	•	1.7	T 1 1 1 1	1 0	
9	le tha	('Alginia	dagraa the	2 C2MA C17A	agthe	Fahrenheit	degree	
40	19 0116	CEISIUS	uceice un	Same Size	as unc	T CHILL CHILLOID	uceicc.	

© 1988 Prentice-Hall, Inc.

a. _____°
$$F = 212 \times 100$$
°C + ______°

c. _____
$$^{\circ}$$
F = _____× 0 $^{\circ}$ C + ____ $^{\circ}$

$$^{\circ}F = \underline{\hspace{1cm}} \times ^{\circ}C + \underline{\hspace{1cm}}$$

a. _____°
$$F = 50$$
°C

b. ____°
$$F = -40$$
°C

c. _____°
$$F = 30$$
°C

Name	Class	Date
Chapter 17		Using Science Skills: Developing a formula

Deriving the Conversion Factors for the Celsius and Kelvin Scales

A chart showing the three different temperature scales has been provided for you by your teacher. Use it to complete this activity. Place a straight edge across the Celsius and Kelvin scales to read their corresponding values.

1. Complete the following table and answer the questions that follow it.

	Celsius	Kelvin	
T_1	30°	0	
T_2	40°	0	
T_2-T_1	0	0	
$\frac{T_2 - T_1}{10}$	0	0	

a.	Is an increase of 10 degrees on the Celsius scale also an increase of 10 degrees on the Kelvin
	scale?

b. Is the size of one degree on the Celsius scale the same as the size of one degree on the Kelvin scale? _____

2. Complete the following table and answer the question that follows it.

Celsius		Kelvin		
T ₃	50°	T ₄	0	
T ₅	80°	T ₆	0	
$T_4 - T_3 =$			0	
•	$T_6 - T_5$	=	0	

What number must be added to the Celsius temperature in order to obtain the corresponding Kelvin temperature? _____

3. Complete the following conversion factors.

4. Using the conversion factors you have just derived, solve the following problems.